Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38796704

ABSTRACT

Sialidosis (Mucolipidosis I) is a glycoprotein storage disease, clinically characterized by a spectrum of systemic and neurological phenotypes. The primary cause of the disease is deficiency of the lysosomal sialidase NEU1, resulting in accumulation of sialylated glycoproteins/ oligosaccharides in tissues and body fluids. Neu1-/- mice recapitulate the severe, early-onset forms of the disease, affecting visceral organs, muscles, and the nervous system, with wide-spread lysosomal vacuolization evident in most cell types. Sialidosis is considered an orphan disorder with no therapy currently available. Here, we assessed the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis. Neu1-/- mice were co-injected with two scAAV2/8 vectors, expressing human NEU1 and its chaperone PPCA. Treated mice were phenotypically indistinguishable from their WT controls. NEU1 activity was restored to different extent in most tissues, including the brain, heart and muscle, and visceral organs. This resulted in diminished/absent lysosomal vacuolization in multiple cell types and reversal of sialyl-oligosacchariduria. Lastly, normalization of lysosomal exocytosis in the CSF and serum of treated mice, coupled to diminished neuroinflammation, were measures of therapeutic efficacy. These findings point to AAV-mediated gene therapy as a suitable treatment for sialidosis and possibly other diseases, associated with low NEU1 expression.

2.
Cell Rep ; 43(5): 114117, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38630590

ABSTRACT

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated N-methyl D-aspartate receptor (NMDAR) Ca2+ channel, thereby increasing Ca2+ flux, activating extracellular signal-regulated kinase (ERK) signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and worsens the generalized neuronal cell death characteristic of GM1-gangliosidosis.

3.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014061

ABSTRACT

Sialidosis is a glycoprotein storage disease caused by deficiency of the lysosomal sialidase NEU1, which leads to pathogenic accumulation of sialylated glycoproteins and oligosaccharides in tissues and body fluids. The disease belongs to the group of orphan disorders with no therapy currently available. Here, we have tested the therapeutic potential of AAV-mediated gene therapy for the treatment of sialidosis in a mouse model of the disease. One-month-old Neu1 -/- mice were co-injected with two scAAV2/8 vectors, expressing NEU1 and its chaperone PPCA, and sacrificed at 3 months post-injection. Treated mice were phenotypically indistinguishable from their WT controls. Histopathologically, they showed diminished or absent vacuolization in cells of visceral organs, including the kidney, as well as the choroid plexus and other areas of the brain. This was accompanied by restoration of NEU1 activity in most tissues, reversal of sialyl-oligosacchariduria, and normalization of lysosomal exocytosis in the CSF and serum of treated mice. AAV injection prevented the occurrence of generalized fibrosis, which is a prominent contributor of disease pathogenesis in Neu1 -/- mice and likely in patients. Overall, this therapeutic strategy holds promise for the treatment of sialidosis and may be applicable to adult forms of human idiopathic fibrosis with low NEU1 expression.

4.
bioRxiv ; 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37503265

ABSTRACT

Endoplasmic reticulum-plasma membrane (ER-PM) junctions mediate Ca 2+ flux across neuronal membranes. The properties of these membrane contact sites are defined by their lipid content, but little attention has been given to glycosphingolipids (GSLs). Here, we show that GM1-ganglioside, an abundant GSL in neuronal membranes, is integral to ER-PM junctions; it interacts with synaptic proteins/receptors and regulates Ca 2+ signaling. In a model of the neurodegenerative lysosomal storage disease, GM1-gangliosidosis, pathogenic accumulation of GM1 at ER-PM junctions due to ß-galactosidase deficiency drastically alters neuronal Ca 2+ homeostasis. Mechanistically, we show that GM1 interacts with the phosphorylated NMDAR Ca 2+ channel, thereby increasing Ca 2+ flux, activating ERK signaling, and increasing the number of synaptic spines without increasing synaptic connectivity. Thus, GM1 clustering at ER-PM junctions alters synaptic plasticity and exacerbates the generalized neuronal cell death characteristic of GM1-gangliosidosis.

5.
J Biol Chem ; 298(10): 102425, 2022 10.
Article in English | MEDLINE | ID: mdl-36030822

ABSTRACT

Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline-rich domain for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.


Subject(s)
Actins , Calcium-Binding Proteins , Exosomes , Syntenins , Actin Cytoskeleton/metabolism , Actins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Exosomes/metabolism , Proteomics , Syntenins/metabolism , Humans , Animals , Mice , Protein Multimerization
6.
Mol Ther Methods Clin Dev ; 23: 644-658, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34901309

ABSTRACT

AAV-mediated gene therapy holds promise for the treatment of lysosomal storage diseases (LSDs), some of which are already in clinical trials. Yet, ultra-rare subtypes of LSDs, such as some glycoproteinoses, have lagged. Here, we report on a long-term safety and efficacy preclinical study conducted in the murine model of galactosialidosis, a glycoproteinosis caused by a deficiency of protective protein/cathepsin A (PPCA). One-month-old Ctsa -/- mice were injected intravenously with a high dose of a self-complementary AAV2/8 vector expressing human CTSA in the liver. Treated mice, examined up to 12 months post injection, appeared grossly indistinguishable from their wild-type littermates. Sustained expression of scAAV2/8-CTSA in the liver resulted in the release of the therapeutic precursor protein in circulation and its widespread uptake by cells in visceral organs and the brain. Increased cathepsin A activity resolved lysosomal vacuolation throughout the affected organs and sialyl-oligosacchariduria. No signs of hyperplasia or inflammation were detected in the liver up to a year of age. Clinical chemistry panels, blood cell counts, and T cell immune responses were normal in all treated animals. These results warrant a close consideration of this gene therapy approach for the treatment of galactosialidosis, an orphan disease with no cure in sight.

7.
J Neuroinflammation ; 17(1): 157, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32410624

ABSTRACT

BACKGROUND: Fractalkine (CX3CL1; FKN) is a chemokine expressed by neurons that mediates communication between neurons and microglia. By regulating microglial activity, CX3CL1 can mitigate the damaging effects of chronic microglial inflammation within the brain, a state that plays a major role in aging and neurodegeneration. CX3CL1 is present in two forms, a full-length membrane-bound form and a soluble cleaved form (sFKN), generated by a disintegrin and metalloproteinase (ADAM) 10 or 17. Levels of sFKN decrease with aging, which could lead to enhanced inflammation, deficits in synaptic remodeling, and subsequent declines in cognition. Recently, the idea that these two forms of CX3CL1 may display differential activities within the CNS has garnered increased attention, but remains unresolved. METHODS: Here, we assessed the consequences of CX3CL1 knockout (CX3CL1-/-) on cognitive behavior as well as the functional rescue with the two different forms of CX3CL1 in mice. CX3CL1-/- mice were treated with adeno-associated virus (AAV) expressing either green fluorescent protein (GFP), sFKN, or an obligate membrane-bound form of CX3CL1 (mFKN) and then subjected to behavioral testing to assess cognition and motor function. Following behavioral analysis, brains were collected and analyzed for markers of neurogenesis, or prepared for electrophysiology to measure long-term potentiation (LTP) in hippocampal slices. RESULTS: CX3CL1-/- mice showed significant deficits in cognitive tasks for long-term memory and spatial learning and memory in addition to demonstrating enhanced basal motor performance. These alterations correlated with deficits in both hippocampal neurogenesis and LTP. Treatment of CX3CL1-/- mice with AAV-sFKN partially corrected changes in both cognitive and motor function and restored neurogenesis and LTP to levels similar to wild-type animals. Treatment with AAV-mFKN partially restored spatial learning and memory in CX3CL1-/- mice, but did not rescue long-term memory, or neurogenesis. CONCLUSIONS: These results are the first to demonstrate that CX3CL1 knockout causes significant cognitive deficits that can be rescued by treatment with sFKN and only partially rescued with mFKN. This suggests that treatments that restore signaling of soluble forms of CX3CL1 may be a viable therapeutic option for aging and disease.


Subject(s)
Brain/metabolism , Chemokine CX3CL1/metabolism , Cognitive Dysfunction/metabolism , Animals , Mice , Mice, Knockout , Neurogenesis/physiology , Protein Isoforms
SELECTION OF CITATIONS
SEARCH DETAIL
...